Evaluación del potencial dendrocronológico de dos arbustos que coexisten en áreas desérticas de montaña del centro-oeste de Argentina
DOI:
https://doi.org/10.14522/darwiniana.2024.121.1200Palabras clave:
Ambiente semiárido, arbusto, dendroclimatología, clima, crecimiento radialResumen
Los estudios dendrocronológicos con arbustos de ecosistemas áridos en América del Sur son de gran importancia para interpretar la ecología de estos ambientes debido a la escasez de estudios en la región. Este enfoque permite evaluar las respuestas de las poblaciones vegetales expuestas a las condiciones del clima árido. Desarrollamos cronologías de ancho de anillos y evaluamos, por primera vez para Argentina, la relación entre el crecimiento radial y variables climáticas (precipitación, temperatura e índice de aridez) de dos especies de arbustos característicos de ambientes montanos, Proustia cuneifolia y Hualania colletioides. La cronología de P. cuneifolia registró una correlación positiva con la precipitación (mayo), temperatura (octubre, julio y febrero) y SPEI (junio-octubre). La cronología de H. colletioides presentó relaciones negativas con la temperatura media de los meses de diciembre y febrero. Los resultados sugieren que las variaciones en el ancho de los anillos anuales de P. cuneifolia están influenciadas por el clima regional, principalmente por la aridez, mientras que el crecimiento de H. colletioides podría estar influenciado por factores a escala de micrositio. La intrincada orografía cordillerana genera variaciones en las condiciones climáticas, las cuales pueden imprimir respuestas particulares del crecimiento. Por ello, una red de cronologías ayudaría a interpretar en detalle la respuesta del crecimiento de estas plantas al clima cordillerano.
Citas
Aguilera-Betti, I.; C. H. Lucas, M. E. Ferrero & A. A. Muñoz. 2020. A network for advancing dendrochronology, dendrochemistry and dendrohydrology in South America. Tree-Ring Research 76: 94-101. DOI: https://doi.org/10.3959/TRR2019-12
Anderegg, W. R.; C. Wu, N. Acil, N. Carvalhais, T. A. Pugh, J. P. Sadler & R. Seidl. 2022. A climate risk analysis of Earth’s forests in the 21st century. Science, 377(6610): 1099-1103.
Barichivich, J.; D. J. Sauchyn & A. Lara. 2009. Climate signals in high elevation tree-rings from the semiarid Andes of north-central Chile: responses to regional and large-scale variability. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 320-333. DOI: https://doi.org/10.1016/j.palaeo.2007.10.033
Bhandari, S.; N. Prasad, S. Shah, J. Speer, D. Raj & U. Thapa. 2019. A 307-year tree-ring SPEI reconstruction indicates modern drought in western Nepal Himalayas. Tree-Ring Research 75: 26-39. DOI: https://doi.org/10.3959/1536-1098-75.2.73/
Bisigato, A. J.; P. E. Villagra, J. O. Ares & B. E. Rossi. 2009. Vegetation heterogeneity in Monte Desert ecosystems: A multi-scale approach linking patterns and processes. Journal of Arid Environments 73: 182-191. DOI: https://doi.org/10.1016/j.jaridenv.2008.09.001
Blagitz, M.; P. C. Botosso, T. Longhi-Santos & E. Bianchini. 2019. Tree rings in tree species of a seasonal semi-deciduous forest in southern Brazil: wood anatomical markers, annual formation and radial growth dynamic. Dendrochronologia 55: 93-104.
Blasing, T. J.; A. M. Solomon & D. N. Duvick. 1984. Response function revisited. Tree-Ring Bulletin 44: 1-15.
Blok, D.; U. Sass-Klaassen, G. Schaepman-Strub, M. M. P. D. Heijmans, P. Sauren & F. Berendse. 2011. What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8: 1169-1179. DOI: https://doi.org/10.5194/bg-8-1169-2011
Breshears, D. D.; N. G. McDowell, K. L. Goddard, K. E. Dayem, S. N. Martens, C. W. Meyer & K. M. Brown. 2008. Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89: 41-47.
Bunn, A.; M. Korpela, F. Biond, F. Campelo, P. Mérian, F. Qeadan, C. Zang, A. Buras, J. Cecile, M. Mudelsee & M. Schulz. 2019. Dendrochronology Program Library in R. R package version 1.6.2. http://CRAN.R-project.org/package=dplR.
Callado, C. H.; C. F. Barros, C. G. Costa, S. J. da Silva Neto & F. R. Scarano. 2001. Anatomical Features of Growth Rings in Flood-Prone Trees of the Atlantic Rain Forest in Rio De Janeiro, Brazil. IAWA Journal 22(1): 29-42. DOI: https://doi.org/10.1163/22941932-90000266
Camarero, J. J. & Á. Rubio-Cuadrado. 2020. Relating climate, drought and radial growth in broadleaf mediterranean tree and shrub species: a new approach to quantify climate-growth relationships. Forests 11(12): 1250.
Camarero, J.; C. Valeriano, A. Gazol, M. Colangelo & R. Sánchez-Salguer. 2021. Climate differently impacts the growth of coexisting trees and shrubs under semi-arid Mediterranean conditions. Forests 12: 381. DOI: https://doi.org/10.3390/f12030381
Chen, F.; H. Shang & Y. Yuan. 2016. Dry/wet variations in the eastern Tien Shan (China) since AD 1725 based on Schrenk spruce (Picea schrenkiana Fisch. et Mey) tree rings. Dendrochronologia 40: 110-116. DOI: https://doi.org/10.1016/j.dendro.2016.07.003
Cook, E. R. & L. A. Kairiukstis. 1990. Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer, Dordrecht, The Netherlands. DOI: https://doi.org/10.1007/978-94-015-7879-0
Dalmasso, A.; J. Márquez, A. Abarca, R. Montecchiani, M. Rosales & E. Zabaleta. 2011. Flórula del paraje de Pedernal y alrededores. Departamento Sarmiento, San Juan. 1° edición. Universidad Nacional de San Juan, Argentina.
Dobbert, S.; R. Pape & J. Löffler. 2021. Contrasting growth response of evergreen and deciduous arctic‐alpine shrub species to climate variability. Ecosphere 12(8): e03688. DOI: https://doi.org/10.1002/ecs2.3688
Ewing, H. A.; K. C. Weathers, P. H. Templer, T. E. Dawson, M. K. Firestone, A. M. Elliott & V. K. S. Boukili. 2009. Fog water and ecosystem function: heterogeneity in a California redwood forest. Ecosystems 12: 417-433.
Fritts, H. 1976. Tree-Rings and Climate. Academic Press, London, UK.
Gatica, M. G.; J. N. Aranibar & E. Pucheta. 2017. Environmental and species‐specific controls on δ13C and δ15N in dominant woody plants from central‐western Argentinian drylands. Austral Ecology 42(5): 533-543.
Gazol, A. & J. J. Camarero. 2012. Mediterranean dwarf shrubs and coexisting trees present different radial-growth synchronies and responses to climate. Plant Ecology 213: 1687-1698. DOI: https://doi.org/10.1007/s11258-012-0124-3
Giantomasi, M. A.; F. A. Roig Juñent, P. E. Villagra & A. M. Srur. 2009. Annual variation and influence of climate on the ring width and wood hydrosystem of Prosopis flexuosa DC trees using image analysis. Trees 23: 117-126. DOI: https://doi.org/10.1007/s00468-008-0260-5
Golluscio, R. A. & M. Oesterheld. 2007. Water use efficiency of twenty-five co-existing Patagonian species growing under different soil water availability. Oecologia 154: 207-17.
Hadad, M. A.; A. González-Reyes, F. A. Roig, V. Matskovsky & P. Cherubini. 2021. Tree-ring-based hydroclimatic reconstruction for the northwest Argentine Patagonia since AD 1055 and its teleconnection to large-scale atmospheric circulation. Global and Planetary Change 202: 103496. DOI: https://doi.org/10.1016/j.gloplacha.2021.103496
Hadad, M. A.; D. Flores, V. Gallardo, F. A. Roig, Á. González-Reyes& F. Chen. 2022. Dendroclimatic potential of the Adesmia pinifolia shrub growing at high altitude in the Andes foothills. Dendrochronologia 72: 125919. DOI: https://doi.org/10.1016/j.dendro.2021.125919
Harris, I.; T. J. Osborn, P. Jones & D. Lister. 2020. Version 4 of the CRU TS monthly high resolution gridded multivariate climate dataset. Sci. Data 7: 109. DOI: https://doi.org/10.1038/s41597-020-0453-3.
Holmes, R. L. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43(1): 69-78.
Jiang, P.; H. Liu, X. Wu & H. Wang. 2016. Tree-ring-based SPEI reconstruction in central Tianshan Mountains of China since A.D. 1820 and links to westerly circulation. International Journal of Climatology 37: 2863-2872. DOI: https://doi.org/10.1002/joc.4884.
Kiesling, R. 2003. Flora de San Juan. Volumen II Ed. Estudio Sigma. Buenos Aires, Argentina.
Kiesling, R. 2013. Flora de San Juan: volumen III. - 1a ed. - Mendoza: Zeta Editores.
Labraga, J. C. & R. Villalba. 2009. Climate in the Monte Desert: past trends, present conditions, and future projections. Journal of Arid Environments 73(2): 154-163. DOI: https://doi.org/10.1016/j.jaridenv.2008.03.016
Larsson, L. 2014. CooRecorder and CDendro programs of the CooRecorder/CDendro package version 7.7.
Lu, X.; E. Liang, J. J. Camarero & A. M. Ellison. 2021. An unusually high shrubline on the Tibetan Plateau. Ecology 102(6): e03310. DOI: https://doi.org/10.1002/ecy.3310
Melián, E.; G. Gatica & E. Pucheta. 2023. Wood trait trade‐offs in desert plants: A triangular model to understand intra‐and interspecific variations along an aridity gradient. Austral Ecology. DOI: https://doi.org/10.1111/aec.13300
Minetti, J. L. 1986. El régimen de precipitaciones de San Juan y su entorno. Centro de Investigaciones Regionales de San Juan (CIRSAJ) - CONICET.
Moreno-Gutiérrez, C.; T. E. Dawson, E. Nicolas & J. I. Querejeta. 2012 Isotopes reveal contrasting water use strategies among coexisting plant species in Mediterranean ecosystem. New Phytology 196: 489-496
Myers-Smith, I. H.; M. Hallinger, D. Blok, U. Sass-Klaassen, S. A. Rayback, S. Weijers, A. J. Trant, K. D. Tape, A. T. Naito, S. Wipf, C. Rixen, M. A. Dawes, J. A. Wheeler, A. Buchwal, C. Baittinger, M. Macias-Fauria, B. C. Forbes, E. Lévesque, N. Boulanger-Lapointe, I. Beil, V. Ravolainen & M. Wilmking. 2015. Methods for measuring arctic and alpine shrub growth: a review. Earth-Science Reviews 140: 1-13. DOI: https://doi.org/10.1016/j.earscirev.2014.10.004
Oladi, R.; M. Emaminasab & D. Eckstein. 2017. The dendroecological potential of shrubs in north Iranian semi-deserts. Dendrochronologia 44: 94-102. DOI: https://doi.org/10.1016/j.dendro.2017.04.004
Panthi, S.; Z. Fan & A. Bräuning. 2021. Ring widths of Rhododendron shrubs reveal a persistent winter warming in the central Himalaya. Dendrochronologia 65: 125799. DOI: https://doi.org/10.1016/j.dendro.2020.125799
Pasho, E.; J. J. Camarero & S. M. Vicente-Serrano. 2012. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees Structure and Function 26: 1875-1886.
Peña-Gallardo, M.; S. M. Vicente-Serrano, J. J. Camarero, A. Gazol, R. Sánchez-Salguero, F. Domínguez-Castro, A. El Kenawy, S. Beguería-Portugés, E. Gutiérrez, M. de Luis, G. Sangüesa-Barreda, K. Novak, V. Rozas, P. A. Tíscar, J. C. Linares, E. Martínez del Castillo, M. Ribas Matamoros, I. García-González, F. Silla, Á. Camisón, M. Génova, J. M. Olano, L. A. Longares, A. Hevia & J. D. Galván. 2018. Drought sensitiveness on forest growth in peninsular Spain and the Balearic Islands. Forests 9(9): 524.
Piraino, S.; E. M. Abraham, M. A. Hadad, D. Patón & F. A. R. Juñent. 2017. Anthropogenic disturbance impact on the stem growth of Prosopis flexuosa DC forests in the Monte desert of Argentina: a dendroecological approach. Dendrochronologia 42: 63-72. DOI: https://doi.org/10.1016/j.dendro.2017.01.001
R Development Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
Requena-Rojas, E. J.; M. M. Amoroso, G. Ticse-Otarola & D. B. Crispin-DelaCruz. 2021. Assessing dendrochronological potential of Escallonia myrtilloides in the high Andes of Peru. Tree-Ring Research 77: 41-52. DOI: https://doi.org/10.3959/TRR2019-8.
Roig, F. A. 1986. The wood of Adesmia horrida and its modifications by climatic conditions. IAWA Bulletin 7: 129-135. DOI: https://doi.org/10.1163/22941932-90000972
Roig, F.A. & J. A. Boninsegna. 1990. Environmental factors affecting growth of Adesmia communities as determined from tree rings. Dendrochronologia 8: 39-66.
Schmidt, D. N. 2022. Summary for Policymakers: Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel of Climate Change (IPCC), Cambridge University Press.
Schulman, E. 1956. Dendroclimatic Change in Semiarid America. Tucson, The University of Arizona Press.
Šenfeldr, M.; R. Kaczka, A. Buras, A. Samusevich, C. Herrmann, B. Spyt, A. Menzel & V. Treml. 2021. Diverging growth performance of co-occurring trees (Picea abies) and shrubs (Pinus mugo) at the treeline ecotone of Central European mountain ranges. Agricultural and Forest Meteorology 308: 108608. DOI: https://doi.org/10.1016/j.agrformet.2021.108608
St. George, S. 2014. An overview of tree-ring width records across the Northern Hemisphere. Quaternary Science Reviews 95: 132-150. DOI: https://doi.org/10.1016/j.quascirev.2014.04.029
Stokes, M. & T. Smiley. 1968. An introduction to Tree-ring Dating. Univ. Chicago Press, Chicago.
Tejedor, E.; M. A. Saz, J. Esper, J. M. Cuadrat & M. de Luis, M. 2017. Summer drought reconstruction in northeastern Spain inferred from a tree ring latewood network since 1734. Geophysical Research Letters 44: 8492-8500. DOI: https://doi.org/10.1002/2017GL074748.
Trouet, V. & G. J. Van Oldenborgh. 2013. KNMI climate explorer: a web-based research tool for high-resolution paleoclimatology. Tree Ring Research 69: 3-13.
Vicente-Serrano, S. M.; S. Begueria & J. I. Lopez-Moreno. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate 23: 1696-1718. DOI: https://doi.org/10.1175/2009JCLI2909.1
Vicente-Serrano, S. M.; J. I. López-Moreno, S. Beguería, J. Lorenzo-Lacruz, C. Azorin-Molina & E. Morán-Tejeda. 2012. Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering 17(2): 318-332. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433
Villalba, R. & J. A. Boninsegna. 1989. Dendrochronological studies on Prosopis flexuosa DC. IAWA Bulletin 10: 155-160. DOI: https://doi.org/10.1163/22941932-90000483
Villalba, R.; P. E. Villagra, J. A. Boninsegna, M. S. Morales & V. Moyano. 2000. Dendrocronología y Dendroclimatología con especies del género Prosopis en Argentina. Multequina 9(2):1-18.
Vuille, M.; E. Franquist, R. Garreaud, W. S. Lavado Casimiro & B. Cáceres. 2015. Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research: Atmospheres: 120: 3745-3757.
Waite, P. A.: C. Leuschner, S. Delzon, T. Triadiati, A. Saad & B. Schuldt. 2023. Plasticity of wood and leaf traits related to hydraulic efficiency and safety is linked to evaporative demand and not soil moisture in rubber (Hevea brasiliensis). Tree Physiology 43: 2131-2149. DOI: https://doi.org/10.1093/treephys/tpad113
Weijers, S.; N. Beckers & J. Löffler. 2018. Recent spring warming limits near-treeline deciduous and evergreen alpine dwarf shrub growth. Ecosphere 9(6): e02328. DOI: 10.1002/ecs2.2328. https://doi.org/10.1002/ecs2.2328
Wigley, T.; K. R. Briffa & P. D. Jones. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology 23: 201-213. DOI: https://doi.org/10.1175/1520-0450(1984)023%3C0201:OTAVOC%3E2.0.CO;2
Young, A. B.; D. A. Watts, A. H. Taylor & E. Post. 2016. Species and site differences influence climate-shrub growth responses in West Greenland. Dendrochronologia 37: 69-78. DOI: https://doi.org/10.1016/j.dendro.2015.12.007
Zang, C. & F. Biondi. 2015. Treeclim: An R package for the numerical calibration of proxyclimate relationships. Ecography 38: 431-436. DOI: https://doi.org/10.1111/ecog.01335
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
A partir de 2012, esta obra está licenciada bajo una Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .
Cualquier obra derivada deberá estar previamente autorizada con nota escrita de los editores.